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This study was conducted to determine if significant forces could be
generated by the movement of one servoactuator, transmitted through the
mechanical linkage to the piston of the other servoactuator and thereby

create a pressure surge of sufficient magnitude to cause structural failure
of hydraulic components.

Introduction

In the analysis, certain simplifying assumptions were made. These will
be enumerated when used. The assumptions are always chosen so that the effect
will be conservative, i.e., worst case conditions are established. One of
the first is that the spring constant is =, i.e., no energy may be stored
in the mechanical configuration. A point mass is also assumed and the
equation of motion for this mass is derived. The motion is due to the
extension or retraction of one servoactuator piston (henceforth called
servoactuator No. 1) while maintaining fixed lengths from the point mass
position to the engine gimbal point and to the vehicle tie-point of the
other servoactuator (henceforth called servoactuator No. 2).

Geometrical Configuration of System

The engineering data used to establish coordinate systems were obtained
from Figure 2-15A in Section II of report R-3896-1 and from the drawing of
the F-1 Engine Simulator Stand prepared by the Brown Engineering Company
and dated 6-27-65.

The first approach was evolved in the following manner. Since the
length from the point mass to the gimbal point is assumed to remain fixed,
motion of the point mass about the gimbal point describes a sphere. 1In
like manner the motion of the point mass about the fixed length servoactuator
No. 2 vehicle tie-point also describes a sphere. The intersection of these




two spheres results in a circle which is the trajectory of the motion of
the point mass.

The first coordinate transformation is made to orient the coordinate
system so that the plane containing the circular trajectory is parallel
to one of the planes formed by two coordinate axes resulting in a simpler
expression for the motion of the point mass.

The second coordinate transformation is made to translate the origin
of the coordinate system to the neutral position of the point mass so that
the coordinates of the point mass position vector are all zero when the
engine is in the neutral position.

The different coordinate systems and identification of nomenclature
are given in Figure 1.

Figure 1: - Location of Equivalent Point Mass of the Engine with
Respect to Three Cartesian Coordinate Systems.

Where:
1) 01 - the gimbal point of the engine.
(2) M - the equivalent point mass of the engine.
(3) C - the fixed point in the y_., z. plane to which actuator No. 2

is attached. 1 !

(4> B - the fixed point in the x

A plane to which actuator No. 1
is attached.

1




(5) the xl, yl' zl coordinate system corresponds to the x;, y, z;
coordinate system in Figure 2-15A from R-3896-1 Report, Section II.
(6) ?1 - the magnitude l;ll is the length of the vector from the gimbal
point of the engine to the point mass of the engine.
)
actuator No. 2, i.e., the length from the servoactuator

(7 ;2 - the magnitude

is the equivalent fixed length of servo-

vehicle tie-point to the point mass of the engine.

?3 is the equivalent variable length of

servoactuator No. 1, i.e., the length from the servoactuator

(8) T, - the magnitude

vehicle tie-point to the point mass of the engine.

the magnitude Iru is the length of the vector from the gimbal

point to the vehicle tie-point of servoactuator No. 2.

oL
!
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(10) £ - angle through which x_, y,» 2 coordinate system is rotated

1 1 1 A ] A

about the x. axis to establish the x , y , z coordinate system.

1
« = constant = 8°.

First Approach

In the Xyr ¥y 2 coordinate system with its origin at the gimbal

1
point 01 the fixed vector ;4 and the neutral positions of the vectors ;1
and ;2 are given by:l’2
r, = (12.8) By * (52.8) uy + (12.7) B,
_ 1 ! 1
= (- . + (-75 1
T, (-10.5) uyl ( ) “21 6D
T = T - T = o I + "
r, =71, T, (12.8) pxl + (63.3) pyl (87.7) uzl

where B oo & and ;z are unit vectors directed along the positive X,
1 N 1
¥, 2, axes respectively.

Now since it is assumed that the lengths of the vectors ;1 and ;2

do not change upon motion of the point mass then

(D

Superscripts refer to reference number




l—
|r1l= constant = 55,8",

and |;zl= constant = 108.9" )
|;4'= constant = 75,729",

1

L L
In the x , v , 2z coordinate systems with its origin at the gimbal

1’ the trajectory of the motion of the point mass describes a circle
] 1 ]

which is contained in a plane parallel to the plane formed by the x , y

point O

¥

coordinate axés. This x , y , 2z coordinate system is obtained from the

1 Y1 % coordinate system by a rotation. The Xy1 ¥yr 24 coordinate system
t

is rotated about the x axis until the z axis (corresponds to the z, axis

X

before rotation) passes through the vehicle tie-point of servoactuator No. 2.
This will then give the geometrical relationships depicted in Figure 2.

The transformation equations will be given directly.

Figure:2: - Path Described by Equivalent Point Mass of Engine in
1 1 A

X , Y, z Coordinate Systemn,

t 1 L

With respect to the x , y , 2 coordinate system the path described

by the point mass (M) of the engine, with the constraints that ?1 = constant

* L

= constant, is a circle pareallel to the x , y plane. The center
1t

of the eircle is displaced a constant distance, "a", on the z axis.

and

A
At z = a the equation of the circle is:
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therefore:

= constant.

i
w
——
1

= radius of circle W)

The vector ?1 can be expressed as:

?1 = (x ) ;;, + (y ) ;y, + (a) E;,

where ;x" ;y' and ;z' are unit vectors directed along the positive x , y

1
and z axes$ respectively. Using Equation (4)

T, = (x) i +[?[

It should be pointed out that for practical displacements (physical

-G R @iy (5)

%5

limitations on amount of retraction or extension of servoactuator pistons)

of the point mass the values of the coordinate y' will be positive so that
only the positive solution given by Equation (4) need be retained and such
is the case in Equation (5).

The value of the length a can be determined from Figure 3 and Equation

& 2 —p o T
(2). 1 4

Figure 3: ~ Figure Used to Determine the Value of (a).
I |2_ < 2 I 2
a= 21 i = 0m (6
2 T,

and

2 .
- a2 = 52.2" “(7)

FE,




It is now desired to write the vector r

system.

in the x , ¥y , z coordinate
1 o o o

This is a coordinate system whose origin is at the neutral position

of the point mass and is accomplished by a translation of the original

X coordinate system.

IRERALIRS

5 to the Xy, ¥y0 2y coordinate system results in:

- _ - - - 2
1T R M * by, s
. =
i
!
(z.) <
l 1 N
z, T 1
(zi) (v.)'
i -\
\\l ’/’
l/r
7 P."""'iyi
z i 1
yf
4!
Figure 4: - Transformation of x_,

1 1 L 1
XxX,¥,2

Coordinate Transformation
X 1 0 0 xl
1
y =]0 cos « -sin L] e Yy
2 0 sin « cos « z1
" x] 1 0 o 1 Ix 7
1
Yy =10 cos « sin £ je{y
z 0 -sin « cos « z
: ]

Transforming the vector r

or

1 given by Equation

(See Figure 4)

(8)

- x, cos £ + a sin «)

(a cos « —Jrz - xi sin «)

5

Coordinates rotated about
x. axis
1

¥y 2y Coordinate System into

Coordinate System

Unit Vector Transformations
px' 1 0 0 B
- _ 1

| =10 cos £ -sin Ljeju
p'Y ¥y
oot in « | 1o
B’ 0 sin cos ®,

—- = =c=4
b 1 0 0 B
—1 -
=10 cos « sin «]e '
“yl “y
H, 0 -sin « cos uz,l
HEEY I L%




The wvector r1 can now be written in the xo, yo, z0 coordinate

system which has the neutral position of the point mass as its origin.

The transformation between the x coordinate system and the

1’ Y1t B

Xo. yo, z0 coordinate system is a linear displacement and the trans-

formations are given in Equation (9).

Coordinates Unit Vectors
X, T X + kl ' gxo = pxl and Kl = 12.8
= + 1— = T = '
¥y, =Y, k2 ) gyo uyl and k2 52.8 9
= + n = a =
z, z k3 ) sz pZI and k3 12.7

The vector r1 is now written as:

- - - 2 2 :
r B (xo + kl) + uy ( Jrs - (x0 + kl) cos 4 + a sin £ + kz)
° ° (10)

- 2 2 .
+ on (a cos « -‘LS - (xo + kl) sin « + k3)

Equation (10) is an exact expression for the vecter ;1 and is a
function of only one variable (xo). The position of the equivalent point
mass (M) of the engine can be determined by the vector ;1.

A solution for the equation of motion of the equivalent point mass
of the engine as a function of time (assuming a given extension of the
actuator as a function of time) was attempted using Equation (10). The
complexity of the equations obtained by using this approach became
unwieldy for hand computation and another approach was sought. It should
be pointed out that the possibility of machine computation was kept in
mind and if results from the succeeding approximation indicated the genera-

tion of detrimental pressure surges, the exact solution would be sought.

An approximate solution will now be given. Redrawing Figure 2



in a manner more conducive to analysis by angular coordinates results in

Figure 5.

[\

)

€ measured from .
plane containing =z
axis and pocint of
neutral position of
point mass

R
bl
-t

= constant.

Simplified Unit Vector

Notation
l = ux'
x' J = p‘y'
k = ot

1] 1 t
Figure 5: - Path Described by Equivalent Point Mass inx , y , 2z
Coordinate System.

A given extension in actuactor No. 1 will cause a displacement of

the point mass in the + 6 direction as shown in Figure 6.

Y

M(o0) - initial position pro-

JRAS jected into x', y°
plane.

t

X
'

Figure 6: - Projected Path iﬂ x , y Plane.



From Figure 6:

as = |T |86 = ¢ l?llsin SWY

The tangential speed of point M. is:

ds _ = ]2 .
v o= Ir1,9 sin ¢

Where © = angular speed of the point M

Using vector notation3, the angular velocity is given by

w=-6Kk,
and the velocity of the point M is
-
cR R
1
dt
The acceleration of point M is
a = dv _d WxT) = do XT, +w o
dt dt 1 Ta T T T
Rewriting Equation (15):
a=4LxT wx WxT
a xr) +twx wx rl)
Where £ = L k = -0 k = -6 k = angular acceleration. Solving Equation

(16) using the vector r, given in Equation (5) gives

1

3=1@ rg_x'2-<é>2x)-3 6x + )% Ve

To determine 6, O use equation (11),

® _g L s
dt ‘—f.sl dt
d29 =31 dzs
2 = 2
at || at
One can determine from Figure 5 that:
x = l_ Isin 6

s

(11)

12>

a3

(14)

(15)

(16)

a7z

(18)

19
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For small angular éisplacements x' will be approximately:
L e I-—
x T 8 20)

The chord displacement (As) will be proportional to the displacement
of actuator No. 1 (Af) for small displacements, i.e.,
As =k AR (V3 D)
The value of the constant of proportionality, k, can be determined
to be approximately 1.54 as shown in Figure 71’2 when the point mass is in

the neutral position.

jg————75.7" -_-____;’

-
-Gimbal point'/

108.9"

Actuator #1

Figure: 7 - Figure Used to Determine the Constant of Proportional k.

Substituting Equation (21) into Equation (18) yields:

6= Kk 42
r I dt
o (22)
6= -k 41t
.| at?
|7s]
af a’g
Where Fri linear velocity of the actuator and -5 is the linear accelera-
dat

tion of the actuator. Using Equations (20) and (22), the acceleration

vector (Equation 17) can now be written as:




11

2 =1 (& dzl, H o2 - (e), ,e>3 ,—k-,-—- |e+(e)2,5H1—e)

'dt

and for small angular displacements

2 - 2 *
3T ﬂ-g- - 2 ,rsle) 3o E’-% 0 + (8)2 'rsl ) (23)
-dt dt

From Newton's Law as applied to the kinetics of particles:
(acceleration) 24)

It seems reasonable to assume that the maximum acceleration, there-
fore maximum force, occurs at the instant the actuating signal is applied
and before the mass has been displaced any appreciable distance. Therefore
6 and 6 are very small quantities. With this approximation, equation (24)

can be written as:

2 42
F=M '{(k-‘-’——%)-ﬁ(k-—' (25)
at dt

It now remains to find the component of force that is transmitted
along the axis of the piston of servoactuator No. 2. Recalling that ;2
is a vector directed from the vehicle tie-point of servoactuator No. 2
to the point mass, it would be more appropriate to use the line of action
of a vector drawn from the vehicle tie-point of servoactuator No. 2 to the
engine tie-point of servoactuator No. 2 as this gives the true axis of the
piston.A/Since the initial displacements are assumed to be small, the
coordinates of this vector with the engine in the neutral position should
suffice. Label this vector ?6' In the X0 Vyr 2y coordinate system it is
given by 1,2

re = 54.4 uyl + 25, (26)

and by using the transformations given in Figure 4
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?6 = 50.3 j + 32.3 k (27)

1 1 A

in the x , y , z coordinate system.
The component of force given by Equation (25) that is transmitted

along the axis of the piston of servoactuator No. 2 is

S

F . ?6
IF*Zl = —I:;-I-— . (28)
i 6
Now _
r6 = 59.8
therefore
2
M ace
‘th' = Soogfk ® 22| n (29

Fud

The pressure surge developed by this force is 4p = 42 where A 1is the

A |

2 p

piston area of the servoactuator which is 57 in". For a maximum linear

3 1
acceleration of 12 g'su and an engine mass of 21 x 10 1b 5 >

g in/sec
Equation (29) results in F#ZI = 6500.0 1bs and
Ap = 9399—;59 = 114 . 6 1b/in°. (30
57 in

Since 6 is less than .1 radians (<5°) which is the maximum angular
displacement about the gimbal point from the neutral position, there
does not appear to be any danger of a high pressure surge being developed

through the mechanical link. The low value does not seem to warrant any

further investigation along these lines.
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